SESQUITERPENES FROM ARTEMISIA PRINCEPS

KATSUMI YANO and TAMIO NISHIJIMA

Department of Chemistry, Fukuoka University of Education, Munakata-machi, Munakata-gun, Fukuoka, Japan

(Received 2 August 1973)

Key Word Index—Artemisia princeps; Compositae; mugwort; essential oil; y-humulene; sesquiterpenes.

Abstract—Copaene, cyperene, caryophyllene, β -farnesene, α -himachalene, γ -humulene and farnesyl acctate were isolated from the root of *Artemisia princeps*. As a result of isomerization studies on γ -humulene, the main constituent, a preferred conformation was proposed.

The polyacetylenes of the roots¹ and the volatile constituents of the leaves² of Artemisia princeps Pamp. have been the subjects of previous studies. The presence of ylangene, caryophyllene, β -elemene, humulene, β -, γ - and δ -cadinene, α -curcumene, calamenene, calacorene and β -selinene have been confirmed.² Using a combination of column chromatography and preparative GLC, the root oil of A. princeps has now been found to contain γ -humulene (54%), β -farnesene (13%), caryophyllene (7%), α -himachalene (6%), cyperene (2%), copaene (1%) and farnesyl acetate (trace, from the polyacetylene fraction).¹ Freshly isolated and purified γ -humulene (1) was then passed in a stream of helium, through a column of diatomaceous earth heated to 180°. At that temperature γ -humulene (1) was almost completely rearranged to a series of hydrocarbons from which caryophyllene (3) and α -himachalene (4) were isolated as the main products of isomerization. On standing, a 10% soln of pure γ -humulene in CCl₁ was found to

rearrange principally to the same products. This isomerization shows a *trans* annular interaction between the two double bonds in the *cyclo*-undecane ring and that γ -humulene has the conformation to make either cyclobutane or cyclohexane rings with relative ease. The NMR signals at δ CCl₄ 1·37 (3H, d, J = 1·5 Hz, CH₃-C=CH) indicate that a methyl group on double bond is situated over the π -electron of endocyclic double bond. From this evidence and from building molecular models, we propose the preferred conformation (2) for γ -humulene.

¹ YANO, K., TAKAHASHI, S. and FURUKAWA, T. (1972) Phytochemistry, 11, 2577.

It is interesting that γ -humulene has been isolated in this root oil accompanied by caryophyllene and α -himachalene and also humulene in leaf oil² is accompanied by caryophyllene, because it is considered to be the biogenetic intermediate for the formation of caryophyllene, himachalene and related sesquiterpenes.³

EXPERIMENTAL

The extract, which was described in the previous paper was chromatographed on deactivated Al_2O_3 column. n-Hexane eluted sesquiterpene hydrocarbons (52% of the extract). GLC separation of the sesquiterpene hydrocarbons were obtained on a 3m × 4mm l.D. glass column packed with 25% polyethylene glycol 6000 adsorbed on 60-80 mesh shimalite using helium gas flow of 30 ml/min at 180°. All compounds were isolated preparatively using above conditions and their identity was characterized by IR and NMR. IR spectra were run either as liquid films or as solutions in CCl_4 . NMR spectra were determined on 10°_{\circ} soln in CCl_4 or C_6D_6 on a 90 MHz spectrometer using TMS as an internal standard.

Characterization of γ -humulene (1). I isolated as indicated above was found to have M = 204·186 (C₁₅H₂₄ = 204·188), [α] $_{0}^{25}$ 0 · λ _{max} 245 nm (ϵ 12·400). Hydrogenation over Adams catalyst in HOAc absorbed six equivalents of H₂. IR* 1670, 1380, 1360, 968 and 877 cm | and NMR* δ CCl₄ 0·93 [6H, s. (CH₃)₂C<], δ CCl₄ 1·37 (3H, d, J 1·5 Hz, CH₃-C-CH) overlapped with methylene signals of 1·39, but both groups in C₆D₆ soln separated to the signals at δ C₆D₆ 1·37 (3 H, d, J 1·5 Hz, CH₃-C-CH) and methylene signals at δ C₆D₆ 1·28, >C=CH₂ group at δ CCl₄ 4·73 (1 H, d, J 2·5 Hz) and 4·77 (1 H, d, J 2·5 Hz), δ CCl₄ 5·18 (1 H, t-m, broad, J 7 Hz, CH-C-CH₃). AB type signals of CH-CH at δ CCl₄ 5·45 (1 H₃, d, J 16 Hz) and 5·73 (1 H_B, d, J 16 Hz).

Isomerization of γ -humulene (1). I was 79 % isomerized by passing it in a stream of He through a heated column containing diatomaceous earth. Main products of isomerization were caryophyllene (13%) and α -himachalene (37%). After recording the NMR spectrum of a 10% soln of pure γ -humulene in CCl₄ the soln was allowed to stand at room temp, for 1 month after which time it was found that γ -humulene isomerized. Analysis of the NMR solution showed that 46% γ -humulene had isomerized to caryophyllene (4%) and α -himachalene (22%).

² TSUBAKI, N., NISHIMURA, K. and HIROSE, Y. (1966) Bull. Chem. Soc. Japan 39, 312.

³ Smedman, L. A., Zavarin, E. and Teranishi, R. (1969) Phytochemistry 8, 1457.

^{*} The authors are grateful to Dr. E. Zavarin, Forest Products Laboratory, University of California, Richmond. California for a copy of the IR and NMR of an authentic sample of \(\gamma\)-humulene.